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Abstract 

Objective. To develop a detailed non-linear 3-D dynamic finite element model of the 

knee joint and perform preliminary analysis simulating different loading conditions to 

confirm reasonable function of the model. 

Design. Using ANSYS, a finite element model of the human knee was created and tested. 

Background. Finite element models of the knee have been developed in previous studies. 

However, no study has generated a detailed tissue level model, or performed dynamic 

testing on a model. 

Methods. Initial cartilage and ligament geometry was received from a previous study. A 

finite element mesh including bone was created. The model was constrained to simulate 

different experimental testing conditions by rigidly fixing the distal tibia and limiting the 

motion of the proximal femur. Free vibration and steady state analyses of the model were 

performed simulating experiments. 

Results. A detailed, highly nonlinear finite element model of the human knee was created 

in three dimensions. Axial compressive load and two constraint conditions were applied. 

Solution was performed to the point of easy convergence. The model was also examined 

through dynamic analysis to find the mode shapes. The model performed well under this 

initial analysis. 

Conclusion. The model was developed and tested successfully. The model needs further 

refinement and verification with experimental data to follow. The preliminary analysis of 

the model indicated that constraint conditions could significantly affect the magnitude 

and distribution of stresses within the different components of the knee joint. Mode 

shapes are also varied at different constraint conditions. The model is applicable to 

predict the vulnerable parts of the knee joint at different clinical situations. as well as 

occupational conditions. 
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Chapter 1: Introduction 

Background 

Mechanical factors play an important role in the cause of knee injuries and diseases such 

as osteoarthritis (QA). While performing daily activities such as walking, running, and 

climbing as well as during occupational and sport activities, the joint is exposed to 

vibrations and multiple impacts. There is some evidence that the cumulative effect of 

these impact forces may be harmful. For instance, researchers showed that repeated 

impulse loadings could produce degenerative changes in cartilage [Radin et al. 1973]. 

There is also a high risk of osteoarthritis in occupations involving repeated squatting and 

lifting tasks [Holibkova et al., 1989; Cooper, 1995]. Premature and posttraumatic 

osteoarthritis is common in elite athletes participating in sport activities involving 

multiple impacts on the knee joint such as soccer, cross-country skiing, ice hockey [Roos, 

1998; Sandmark, 1996] as well as heavy weight-bearing such as weight lifters [Spector et 

al., 1996]. Even teenagers in high school sports are very susceptible to traumatic knee 

injury; with 60.3% of all United States school sports injuries requiring surgery involving 

the knee [Powell JW, Barber-Foss KD, 1999]. According to an individual's age, fitness, 

and weight, these activities may cause the joint load, stiffness, and damping to reach 

critical limits initiating or accelerating different knee disorders. 

The knee joint is a complex nonlinear dynamic system acting as the main shock absorber 

of the body. Its shock absorbing property depends on the material behaviour of its 

constituents such as meniscus, cartilage, bones, etc. The knee joint dynamic behaviour is 

the main determinant of how ground impact forces are transmitted to the other upper 

load-bearing joints such as hip and spine. A reduced dynamic performance at the knee 

joint level not only has a deteriorating affect on different constituents like bone, cartilage, 

etc. of the knee joint itself but may also adversely affect hip joint and spine, increasing 

the risk of osteoarthritis and low-back pain [Wolfe et al., 1996]. 

1 
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The prevalence of knee OA increases with age throughout the elderly years [Felson et al., 

1987]. Elderly persons at high risk of developing radiographic knee OA include obese 

persons and those who are physically active. There is also an increase in rate of OA 

following meniscectomy in young population [Neyret et al., 1994] and damage to the 

ACL. An increase in weight correlated directly with the risk of developing OA [Felson et 

al., 1997]. 

Musculoskeletal disorders, of which OA is the most common, cause significant 

economic, social, and psychological costs. Costs of illness have risen over recent decades 

accounting for up to 1-2.5% of the gross national product for those countries studied so 

far, including the USA, Canada, UK, France and Australia [March and Bachmeier, 1997]. 

Statistics show that over two million cases of knee injury occur in the United States each 

year. Inadequate understanding of the knee joint dynamic behavior results in poor 

preventive measures and management of these injuries. This will further increase the 

number of population suffering from knee osteoarthritis [Cooper, 1995; Roos, 1998; 

Spector et al., 1996] and the consequent low back pain [Wolfe et al., 1996). Osteoarthritis 

is the most common form of arthritis targeting elderly as well as active age groups in the 

population. It can result in severe pain and disability and is becoming one of the great 

healthcare challenges of the future [Felson, 1996; Dieppe, 1993]. About 5% of the United 

States population is affected with hip or knee osteoarthritis. Because of the frequency, 

associated pain, and disability of this disease, osteoarthritis accounts for much of the 

disability in lower extremities. More than 70% of total hip and knee replacements are 

performed for osteoarthritis [Felson, 1996]. Osteoarthritis is one of the most important 

diseases as it frequently affects the active age group of the population and is the source of 

considerable loss of working hours and of disability [Cooper, 1995; Roos, 1998; Spector 

et al., 1996]. Because osteoarthritis is so common, identification of mechanical factors 

that increase osteoarthritis risk could prevent substantial pain and disability in the elderly 

as well as active age group and the use of costly health care services. 

2 
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Overweight people are at higher risk of developing knee osteoarthritis. Furthermore, 

being overweight is considered as a risk factor in accelerating disease progression in knee 

OA. The health-related economic cost of obesity to U.S. business in 1994 was estimated 

to total $12.7 billion. Osteoarthritis of the knee shares a substantial amount of this cost 

[Thompson et al., 1998]. Unfortunately, studies of metabolic factors linked to obesity 

have not provided an explanation for these findings [Felson and Chaisson, 1997]. In this 

case, the role of mechanical factors seems to be very important. Therefore, investigating 

the role of upper body mass and weight applied on the knee joint and its dynamic 

response may help develop a better understanding of the knee. A detailed nonlinear 

dynamic finite element model is ideally suited for this task, since it allows for 

investigation of the knee under varied circumstances. Creation of such a finite element 

model would also allow for many more future studies on knee pathology and 

degenerative effects leading to OA and other diseases. 

Previous Studies 

Computational models of the knee have been developed over the past several decades. 

However, these models leave much to be desired, since they often over-simplify the 

geometry and material properties of the knee. Several two dimensional models have been 

created [Gill HS, et al., 1996]. These may have been successful but limited to describing 

only the particular geometry they modeled. Three-dimensional analytical studies have 

become more common in recent years, and typically model the tibiofemoral joint [Abdel­

Rahman, et al., 1993; Blankevoort L, et al, 1991; Wisman J, et al., 1980]. Some studies 

have also modeled the patellofemoral joint [Hirokawa S, 1991; van Eijden TMGJ, et al., 

1986]. These studies typically model only surfaces and neglect the effect of ligaments 

and collagen fibers in meniscus. No study has yet created a tissue-level detailed 3D 

nonlinear dynamic model of the knee, as this study intends. Such a model would allow a 

more detailed analysis, such a vibration modal analysis. 

3 
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Knee Anatomy 

To understand the behavior of the knee, it is important to have a basic knowledge of its 

anatomy. Although the knee is the largest and the most complex joint in the human body, 

it may be better understood by considering its components. The knee [Figure 1] consists 

of bones, cartilage, meniscus, ligaments, and tendons. The weight-bearing bones involved 

are the femur and tibia. The third bone, the patella, serves as a gliding connection against 

the femur for the quadriceps tendons and patellar ligament in order to allow leg 

extension. The tibia and femur consist of different types of bone, layered in order to 

provide an optimal combination of strength and weight. The surface of these bones 

consists of cortical bone, the hardest, strongest, most dense type of bone in the body. 

Cortical bone serves as an outside shell around the less dense trabecular bone on all but 

the articular surfaces. The trabecular bone makes up the internal body of the bone. 

Although less dense, it also supports loading. At the articular surfaces of the dis�al femur 

and proximal tibia are layers of cartilage called condyles. These cartilage sheaths serve as 

low-friction bearing surface to allow smooth sliding and articulation of the· joint in the 

healthy knee. Between the cartilage and trabecular bone is a layer of subchondral bone. 

This bone serves as a connection between the trabecular bone and the cartilage. It has 

strength and density properties between cortical and trabecular bone. Between the 

articular surfaces of the femur and tibia are medial and lateral crescent-shaped pads of 

fibrocartilage, called meniscus. These menisci can be considered as fiber-reinforced 

composites and serve as shock absorbers for impact of the leg. The tips, or horns, of the 

crescents insert to the center of the proximal tibia. Ligaments are string-like bundles of 

collagen fibers connecting the tibia and femur in order to provide stability and constrain 

motion of the knee. These ligaments are nonlinear in stress-strain characteristics. 

Tendons are the attachments of muscle to ligament and bone. 

The normal knee allows for flexion and extension of the lower leg by bending at the 

tibiofemoral connection. As the knee joint flexes, the proximal tibia slides around the 

periphery of the femoral condyle to the posterior. Walking causes the joint to extend and 

4 
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femur --------­

articular cartilage -...... .,;_, 

ACL----l4---���� 

fibula 

tibia 

Figure 1: Anterior Knee in Flexion and Extension 
(Tibia fixed at bottom in both views) 
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flex in a similar, but more complicated manner. The medial condyles of the tibia and 

femur typically bear slightly more weight than the lateral condyles [Kirsch L, et al., 

1998]. Walking also causes the lateral condyles to experience a slight lift off causing a 

temporary loss of contact between the surf aces, especially in persons with OA [Komistek, 

et al., 1998]. The tibia also experiences a slight varus - valgus axial rotation with respect 

to the femur during normal gait [Freeman MAR, 2001]. These many complexities caused 

much early confusion about the motion of the knee, which appears to have slowly 

become clearer to researchers. 

Objective 

This thesis has several objectives. The first is to obtain and transfer cartilage, meniscus, 

and ligament geometry of the knee from the previous work of Shirazi-Adl in Montreal 

[Bendjaballah MZ et al., 1995] into an ANSYS
1 -compatible batch file for use in finite 

element simulation. Then bone (cortical, trabecular, and subchondral) must be added to 

expand the geometry into a more complete model of the knee. The batch file must be 

written to solve for nonlinear dynamic analysis. Finally, the function of the model is 

checked by simple nonlinear static and modal analysis. Modal analysis is conducted at 

different constraint conditions for the benefit of an associated future experimental study 

of the knee, in order to estimate the knee joint resonant frequencies at different constraint 

conditions of interest and help develop experimental procedure. 

1 
Version 8.0 ANSYS University-Intermediate. ANSYS, Inc. Canonsburg, PA 

6 
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Chapter 2: Methods and Materials 

Initial Geometry 

The geometry data of articular surfaces and meniscus was first obtained from A Shirazi­

Adl at Ecole Polytechnique, Montreal, Quebec, Canada [Bendjaballah MZ et al., 1995]. 

This data was gathered by applying computerized tomography (CT) to a fresh frozen 

cadaveric right knee joint from a 27 year-old woman. The joint was found to be 

radiologically and visually normal. The CT image data was taken in 1 mm thick sections 

on the sagittal plane. An in-house image processing program was used in Montreal to 

generate a three dimensional (3D) triangular solid mesh of the bone structure. Soft tissue 

geometry was obtained by a numerically controlled direct digitization machine, due to the 

inherent problem of soft tissue visibility on CT scan images. Next, the 3D Cartesian data 

was smoothed, patched, and gridded into a reconstructed form suitable for finite element 

mocfeling. Then a preliminary mesh was generated for the articular cartilage surfaces 

[Figures 2, 3]. Nonlinear data was added for fibrocartilage [Figures Al, A2] and 

ligaments [Figure A3]. 

Mesh Generation 

We further developed the model by adding the geometries of femur and tibia bones to the 

contact geometry. In order to add the geometry of the bone extending beyond the 

cartilage surfaces provided, many calculations and measurements were made. All 

measurements were made on a Sawbones2 knee model of the adult human knee [Figure 

A4]. This model included tibia and femur with cords approximating ligament 

connections. We had previous experience using such models of bone and were confident 

with the geometrical accuracy. The cords simulating ligaments were severed in order to 

allow better visualization and measurement of the condyles. All node and element 

creation was conducted first in the ANSYS GUI and then transferred to the batch file. 

2 Item# 1152, Pacific Research Laboratories. Vashon, Washington. 

7 
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Figure 2: Pa tell of emoral Articular Cartilage 

Figure 3: Tibial Articular Cartilage 
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To approximate the subchondral bone, a line extension algorithm was created to generate 

new nodes a chosen distance, ds, from existing nodal coordinates. This was applied to the 

femoral cartilage layer and elements were created to model the subchondral bone [Figure 

AS]. The equations used are as follows: 

ds 2 
= Ax2 

+ �y 2 
+ az 2 

ds2 
Ax= 

1+ p2 +r2 

An attempt was made to use a coordinate measuring machine to gather data points for use 

in creating the cortical bone geometry of the femur. Unfortunately, this proved to be a 

very time intensive procedure, due to the age of available equipment, and was discarded. 

A faster method to collect geometric data was employed instead, as suggested by M 

Kasra. Transverse, or axial, sections were selected and marked on the sawbones model 

[Figure A6]. The increment of these sections was chosen to match the spacing of nodes in 

the existing element mesh. This geometry was recorded by applying a fine magnet wire 

to the surface of each section [Figure A 7] and then tracing the wire outline onto paper 

[Figure AS]. The paper outlines were excised [Figure A9], scaled, oriented to the existing 

knee, and affixed to the computer monitor. Then a work plane was selected in the 

ANSYS graphical user interface (GUI) to match the section and nodes were added along 

the periphery of the paper outline. This allowed creation of the peripheral cortical bone 

geometry of the femur and tibia [Figure AIO]. Internal nodes were created to generate the 

element layer of cortical bone. The thickness of this layer was chosen by referencing 

medical texts [Gray's Anatomy, 1995]. 

Nodes for trabecular bone [Figure All] were created on each transverse layer of cortical 

bone. These nodes were first matched to existing geometry of the subchondral bone on 

9 
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the distal femur, but later adjusted to a simplified grid pattern. This adjustment proved 

difficult in practice, and involved many 4-node tetrahedron elements. Elements were 

manually created for the prior layers of trabecular bone, and along the periphery of all 

layers. The internal elements of the simplified grid layers allowed for automatic element 

generation in ANSYS. 

The tibia mesh was produced in a similar fashion to the femur, except for generation of 

the intercondylar space. This was produced by approximating a straight line between the 

existing articular surfaces. The finite element mesh generation primarily consisted of S­

node (solid45) brick elements, however 6-node wedge elements and 4-node tetrahedron 

elements were also employed as the complex geometry required. The generation of the 

femur resulted in 245 elements for cartilage, 962 elements for cortical bone, 244 elements 

for subchondral bone, and 1726 elements for trabecular bone. The mesh generation of the 

tibia resulted in 222 elements for cartilage, 74 elements for cortical bone, 306 elements 

for subchondral bone, and 500 elements for trabecular bone. The menisci matrices were 

modeled by 424 8-node brick elements and their fibers 12 12 nonlinear spring (combin39) 

elements, with 60 spar (link8) elements for attachments to the tibia. Nonlinear spring 

elements were used to simulate the collagen network throughout the menisci. Behavior of 

these elements was described by a force-deformation relationship, allowing both tension 

and compression. The ligaments were modeled by 30 nonlinear spring elements allowed 

to only undergo tension. The patella was modeled by 49 8-node brick elements [Figure 

A12], but was omitted from analysis, due to its negligible effect on axial loads in the 

knee. 

Contact Problem 

The frictionless nonlinear contact problem of articulation was modeled with 5-node 

(contac49) point to surface elements [Figure A13]. Contact was described between six 

articulating surfaces. These are the medial femoral condyle against the proximal medial 

meniscus, medial tibial condyle against the medial distal meniscus, and the medial 

10 
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femoral condyle against the medial tibial condyle. The last three are similar on the lateral 

side. The convex surf ace of the distal femoral condyle were used as contactor points 

against the more concave target surface of the proximal menisci and tibial condyles. The 

distal menisci surfaces were considered as targets against the contactor tibial condyles. 

For each point on a contact surface, contact pair elements were generated for the closest 

nine rhombic target surfaces. A total of 3294 contact elements were automatically 

generated in this fashion. Images of the completed mesh are displayed [Figures A14, 

A15]. 

Material Properties 

A linear elastic constitutive model was applied to the bone and cartilage elements in the 

model. The articular cartilage layers were modeled as isotropic with an elastic modulus 

(E) of 12 MPa and Poisson ratio (v) of 0.45. These values compare with similar previous 

studies [Brown TD, et al. 1983; Haynes WC, et al., 1971; Haynes WC, et al., 1972]. To 

represent the fiber reinforced composite menisci, an elastic modulus of the matrix was 

chosen at 8 MPa. A Poisson ratio of 0.45 was used for this matrix. This approximates 

measurements taken from the cadaveric knee [Bendjaballah MZ et al., 1995]. 

Following previous published data [Carter DR, et al., 1978; Reilly DT, et al., 1974], the 

cortical bone elements were assigned properties of E = 17000 MPa, and v = 0.3. 

Trabecular bone elements were given E = 800 MPa and v = 0.4 [Gibson, U 1985; 

Gibson, LJ 1988; Goldstein SA, 1987] .  Subchondral bone elements were assigned E = 

8000 MPa and v = 0.3. Table 1 summarizes the material properties of the components of 

the model. 

Boundary Conditions 

The model was tested m the ANSYS GUI under different loading conditions and 

constraints. Batch files were written in order to apply these conditions. Again, the patella 

was omitted from analysis for simplicity. With hopes of verifying the model with 

11  
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Table 1 :  Material Properties Summary 

Component E (MPa) V Element Type Number of Elements 

Cartilage 12  0.45 Solid45 5 1 5  
Meniscus 
Body 8 0.45 Solid45 424 
Fibers * * Combin39 1212  
Cortical Bone 17000 0.3 Solid45 1036 
Trabecular Bone 800 0.4 Solid45 6827 
Subchondral Bone 8000 0.3 Solid45 55 1 
Ligament * * Combin39 35 

Contact * * Contac49 3294 

* Nonlinear components are not defined through E and v. 

experimental results to follow, the boundary conditions were set to mimic experimental 

loading. At the same time we would like to predict the knee motions at different 

constraint conditions so that we could designs our experimental fixtures to simulate an in­

vivo knee motions. In this case the finite element analyses of our model and future 

experimental analyses will complement each other. In general, the proximal nodes on the 

femur are constrained. The first fixation method attempted was to fix displacement in the 

anterior-posterior and medial-lateral plane (Constrained Model) [Figure 4] . This was 

intended to al low only axial compression of the joint (z direction), without translation or 

rotation on x-y plane . The second method attempted was to couple the axial degree of 

freedom (Coupled Model) [Figure 5] .  This requires that all the nodes on the proximal 

surface of the femur to move in concert. A fixation of this sort allows for translation in 

the medial-lateral, anterior-posterior, and axial degrees of freedom. It also allows for 

varus - valgus rotation as well as translation in x-y plane. 

12  
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Figure 4: Boundary Conditions Applied to Constrained Model 
(Describes fixation to only allow translation in z direction) 

Figure 5: Boundary Conditions Applied to Coupled Model 
(Describes fixation to allow rotation about z and translation in x, y, and z directions) 
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The second method was deemed more anatomically accurate, since it would allow the 

joint to settle as load is applied. For both cases, load was applied in the distal direction, 

normal to the transverse plane at the proximal femur surface. The distal tibial surface was 

constrained in all degrees of freedom. This prevented any rotation or translation, 

simulating a rigid connection with an experimental loading fixture. 

Nonlinear Analysis Parameters 

As a complicated and highly nonlinear structure, this model has many parameters that 

must be set in ANSYS to allow convergence. Initial values were chosen to allow simple 

convergence . These values may require change in future studies involving this model as 

time and new conditions allow. Large displacement static analysis was considered to 

allow translation of the model. Time at end of loadstep was set to 1000 to correspond to 

the total applied load of 1000 N that was attempted. Automatic time stepping was set to 

program chosen, with substeps allowed to range in number from 50 to 500. Results were 

recorded for every second substep reaching convergence. The default program chosen 

equation solver was allowed in effort to speed solution. Maximum number of equilibrium 

iterations was set to 60, since the model often required more than the default 27 to reach 

convergence for a given substep. Other solution controls were also left to their defaults . 

Initial parameters were assigned to the contact elements to allow solution as wel l .  The 

contact stiffness was set to 1000. Penetration tolerance and pinball radius were set to 0.0 1 

and 3 .0 respectively. 

Modal Analysis Parameters 

Modal analysis was performed on both models to determine the natural frequencies of 

vibration . Densities of the various component materials of the knee were also assigned 

initial values as follows [Table 2] . Since the unit of length used in generating the model 

was millimeters, density had to be specified in Mg/mm. This required a conversion from 

g/cm3 to Mg/mm3 by multiplying the original density by 10-9 _ The knee was lightly 

14 
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Table 2: Density of Materials 
Component Density (g/cm3) 
Cortical Bone 1.85 
Trabecular Bone 0.3 
Subchondral Bone 1 .85 
Cartilage 0.8 
Meniscus 0.8 

preloaded with 100 N and nonlinear static analysis was performed. Block-Lanczos modal 

analysis was performed to extract the first six modal frequencies and mode shapes, 

including prestress effects of static loading. The effect of upper body mass was 

disregarded in this study. 

15 
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Chapter 3: Results 

Nonlinear static analysis and modal analysis was conducted to verify that the finite 

element model was functioning as expected. For the static analysis, two methods of 

proximal femur fixation were examined. Loading was applied to the point of simple 

convergence. For greater loading, additional work will be required to optimize the 

nonlinear properties of the model. This is intended for future research. The results of the 

static analysis are displayed [Figure 6]. There appears to be a slight stiffening effect in 

the curves around 50 N loading. This may result from the contact elements engaging after 

an initial displacement or tension in the ligaments reaching a linear threshold. 

In order to present examples of similar loading cases, the time step corresponding to 

182.5 N loading was selected from the solution of the constrained model, and the time 

step corresponding to 168 N was selected from the coupled model solution. Von Mises 

stress plots and deformed mash plots were produced for the components of interest . 

Deformation 

The maximum total deformation was found to be less for the constrained model [Figure 

7], with 1.828 mm vs. 2.98 mm for the coupled model [Figure A 15]. It was also noticed 

that the coupled model underwent not only simple axial deformation, but also axial 

rotation and translation. The constrained model was prevented from experiencing 

anything but axial deformation due to its boundary conditions. The displacement results 

for the tibia were found to be slightly greater in the constrained model [Figure A 16], with 

0.30 mm than in the coupled model [Figure A 17], with 0. 19 mm displacement. For each, 

the greatest nodal displacement took place on the tibial condyles. The femur experienced 

large displacement in both models [Figures A 19, A20] including rigid body motion in the 

direction of loading. Also, the maximum nodal displacements in the model took place in 

the femur. 

17 
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The meniscus also experienced large deformations, 1 . 19 mm in the constrained model 

[Figure A21] and 1 .5 mm in the coupled model [Figure A22]. More deformation was 

present on the medial side of the meniscus in both models. 

Stress Distribution 

To illustrate the difference in stress distribution, von Mises stress plots were created for 

both models [Figures 8, 9]. Plots were rotated to best illustrate the maximum stress and 

recorded. The Constrained Model femoral cartilage [Figure A23] showed a maximum 

stress in the medial condyle, while the Coupled Model [Figure A24] generated a 

maximum at the lateral condyle. The difference in stress was notable, with 2.57 MPa in 

the Constrained Model and 0.75 MPa in the Coupled Model . The tibial cartilage 

presented similar stress plots for both models [Figures A25, A26], with local maxima on 

the lateral condyles. Plots of the meniscus [Figures A27, A28] show similar relative 

stress distributions, but the lateral half of the Constrained Model [Figure A29] received 

roughly twice the maximum stress of the Coupled Model [Figure A30]. The medial 

meniscus experienced greater stress in the Coupled Model [Figure A31]  than in the 

Constrained Model [Figure A32], but both maxima were located at the anterior horn. 

Although the maximum-recorded stresses in the femur of both models were very similar 

in magnitude, the locations were varied. The Constrained Model [Figure A33] 

experienced a maximum inside the intercondylar notch, while the Coupled Model [Figure 

A34] took a maximum at the lateral proximal cortical shell. The tibia in both models 

[Figures A35, A36] presented similar stress plots, both in value and distribution, with 

maxima at the subchondral connection to the lateral meniscus. The femoral subchondral 

bone plots revealed a variance in distribution between the two models. The Constrained 

Model [Figure A37] showed a maximum just anterior of the intercondylar notch while 

the coupled model [Figure A38] showed a maximum at the lateral side. 
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The tibial subchondral bone showed similar stress plots between both models [Figures 

A39, A40], with concentrations at the lateral side of the intercondylar prominence. The 

femoral cortical shell of each model revealed the maximum stress associated in the 

femur, with a maximum of the Constrained Model [Figure A41] at the center of the 

anterior intercondylar notch, and a maximum stress of the Coupled Model [Figure A42] 

at the proximal lateral femoral shaft. The femoral trabecular bone presented the greatest 

stress on the medial edge of the intercondylar notch in the Constrained Model [Figure 

A43], and the Coupled model gave a maximum at approximately the same location on the 

lateral side [Figure A44]. Finally, the tibial trabecular bone in both models showed 

maxima at similar locations, both on the medial side of the intercondylar prominence 

[Figures A45, A46]. 

Modal Analys is 

Modal analysis was performed on both models to determine the first six natural 

frequencies of vibration. The results are listed below [Table 3]. Animations of mode 

shapes were created and the extreme displacements of each were recorded, with example 

below [Figure 10] and others in Appendix [Figure A47 to A57]. The axial compression 

modes show displacement along the z-axis. Other modes show rotation and translation in 

other directions. The modal frequencies of the Constrained Model were in general higher 

than the frequencies for the Coupled Model, probably due to the greater stiffness imposed 

by the boundary conditions. 
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Model 

Constrained 

Coupled 

22 

Table 3: Frequencies and Mode Shapes 

Mode Number Frequency (Hz) Description 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

10.6 19 Axial compression 

35.780 Torsion about Y-axis 

79.647 Torsion about X-axis 

240. 12  Warping 

244.30 Warping 

26 1 .58 Trabecular bone oscillation 

2.5505 Torsion about z 

5.9778 Torsion about z 

7 .76 13 Compression, translation 

17.702 Axial compression 

126.26 Torsion, warping 

127.73 Warping 

Figure 10: Mode 1 of Constrained Model 
(Showing axial compression) 
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Chapter 4: Discussion 

In this study a detailed nonlinear dynamic finite element model of the human knee joint 

was developed. The model was analyzed under static loading at different constraint 

conditions. The top Constrained Model converged at 330 N, while the top Coupled 

Model converged at 168 N. Modal analyses were performed to find mode shapes. The 

mode shapes are one of the basic dynamic characteristics of any structure. 

Clinical Application of the Model 

By including the upper body mass, this study is the first of its kind to give us valuable 

information about changes in basic dynamic characteristics of the knee joint. For 

example, our future parametric analyses will show the critical combinations of dynamic 

amplitude, preload, and upper body mass that can lead to high stresses at the joint leading 

to OA. Therefore, by referring to the resulting data, preventive measures can be 

determined for different activities involving different combinations of preload, body 

mass, and dynamic amplitude. This can apply to different sport and occupational 

activities. In this case, the chance of developing OA in an individual with a certain body 

mass and certain habits of performing sport or occupational activities may be predicted. 

Knowing how the changes in the body mass can affect the joint dynamic behaviour, the 

preventive measures or rehabilitation exercises can be designed. The finite element model 

can simulate many clinical scenarios. Furthermore, advancement of this study should 

produce reference data, which is essential for researchers, clinicians, and bioengineers in 

their research and design projects dealing with the effect of mechanical factors in 

causation, prevention and rehabilitation of osteoarthritis. The proper treatment, 

prevention and rehabilitation strategies as well as improvement in design of prostheses 

cannot be achieved without understanding the basic dynamic characteristics of the knee 

joint. Without referring to the dynamic system parameters data and their changes under 

different body mass and loading conditions, efforts in the design of new rehabilitation 
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and preventive techniques may be wasted or timely to achieve. Injury or disease may be 

modelled by removing the elements corresponding to a ligament, or altering the modulus 

of trabecular bone to correspond to the osteoporotic case. Hence, comparisons may be 

made with the normal knee analysis in order to design bracing that may delay damage to 

the newly vulnerable tissues . Novel surgical procedures that alter the anatomy of the knee 

might be modelled in order for physicians to understand the effect of the procedure 

before they operate. 

Nonlinear Analysis 

The highly nonlinear properties of the finite element model caused great difficulties in 

convergence. Much time and effort was spent trying to optimize variables to yield a 

converged system obtain valid results. The contact problem was the first major obstacle 

to overcome in analysis. In early versions of the model, the pinball radius (a control 

parameter) [ANSYS, 1997, 2003] had been set too small, due to a misunderstanding of its 

purpose . This pinball radius defines a spherical region around the contact node. When a 

target surface is found to fall within this region, the condition of contact is considered and 

extra calculations are preformed. In this fashion, ANSYS optimizes calculation time. The 

problem that resulted from the prior misunderstanding of the pinball region is that rigid 

body motion was occurring and the femur was effectively falling through the tibia. This 

happened because there is a small initial gap between contacting surf aces in the model, 

and the contact elements never engaged. This problem was solved by increasing the 

pinball radius, so that the condition of contact would be considered from the very 

beginning of analysis .  Many of the other difficulties in convergence deal with altering 

similar variables. Since the model is very large, and the solution is very complex, this 

will continue to be an issue that must be addressed as the model is used to perform 

additional analyses . The main problem seems to be the large deformation of menisci 

causing too much distortion in the contact element therefore causing difficulties to reach 

convergence. 
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Deformation in Static Loading 

From the results listed previously, it was noted that the two models experienced different 

deformations and rigid body motions, as would be expected. The meniscus had large 

deformations on the edges that were not constrained by geometry. This is probably an 

oversimplification of the knee, since mesenchymal attachments would limit the motion of 

these bodies. Perhaps future studies will add this to the model. Some of the displacements 

along the inner edges of the meniscus are suspect, since the loading appears concentrated 

around the contact points of the femoral condyle, instead of being evenly distributed. 

This may be due to a parameter of the contact elements and should be investigated 

further. The Coupled Model rotated axially, equivalent to a slight valgus rotation. The 

Constrained Model was prevented from any rotation by its boundary conditions. Because 

of this difference, the Coupled Model tended to distribute load more evenly over the 

cartilage surfaces by allowing the condyles to settle into their proper alignments. The 

Constrained Model tends to force an unnatural loading condition by not allowing this 

settling to take place. In this way, the Coupled Model comes closer to modeling the true 

physiology of the knee. It is hoped that future work will focus on this version of the 

model, unless another purpose exists to unnaturally constrain the knee. 

Modal Analysis 

The frequencies of axial compressive modes were of particular interest, since they would 

be used as a reference for a future experimental study. These modes were found to exist 

around frequencies from 7 .7 to 17 .7 Hz, depending on boundary condition. The 17 .7 Hz 

result compares favorably with a previous experimental study [Jans et al ., 1988]. That 

study reported the resonant frequency of a knee joint in the axial direction without an 

upper body mass to be about 20-30 Hz. The higher modes of each model experienced 

warping of the femoral shaft, which is due to the boundary conditions imposed. Future 

studies may further restrict motion on this surface and eliminate those warping modes. 
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Future Work 

Since the development of this model was intended to be the initial step in a series of 

analyses and experiments, we have several intentions for the future of this project. The 

first of the plans is to verify the model with an experimental dynamic study of the human 

knee. We intend to examine the possibi lity of altering the characteristics of the meniscus 

in order to better simulate the sudden or large magnitude impacts on the knee. We also 

intend to simulate different clinical conditions to see what vulnerabilities might exist in 

the knee. In summary, this model is intended as a tool to enable further detailed research 

on the human knee. 
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Figure Al: Meniscus Body 

Figure A2: Fiber Reinforcement of Meniscus 
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Figure A3: Ligaments 

Figure A4: Original Sawbones Model of Knee 
http://www.sawbones.com/i mages/products/1/ 1152. jpg 
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Figure AS: Subchondral Bone 

Figure A6: Section Markings on Sawbones 
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Figure A 7: Applying Magnet Wire to Sawbones 

Figure AS: Traced Outline of Magnet Wire 
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Figure A9: Profiles of Section Geometry 

Figure AlO: Cortical Bone 
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Figure All: Trabecular Bone 

Figure A 12: Patella 
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* 

Figure A13: Contact Surfaces 
(Contact nodes shown as stars, target surfaces displayed as splids.) 

Figure A14: Completed Model, Posterior View 
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Figure AlS: Completed Model, Anterior View 
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Figure Al 7: Displacement of Constrained Model Tibia 
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Figure A 18: Displacement of Coupled Model Tibia 
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Figure A19: Displacement of Constrained Model Femur 
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Figure A20: Displacement of Coupled Model Femur 
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Figure A21: Deformation of Constrained Model Meniscus 
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Figure A22: Deformation of Coupled Model Meniscus 
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Figure A23: Stress Distribution in Constrained Model Femoral Cartilage 
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Figure A24: Stress Distribution in Coupled Model Femoral Cartilage 
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Figure A26: Stress Distribution in Coupled Model Tibial Cartilage 
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Figure A27: Stress Distribution in Constrained Model Meniscus 
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Figure A28: Stress Distribution in Coupled Model Meniscus 
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Figure A29: Stress Distribution in Constrained Model Lateral Meniscus 
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Figure A30: Stress Distribution in Coupled Model Lateral Meniscus 
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Figure A31 : Stress Distribution in Constrained Model Medial Meniscus 

NODAL IOLU'l'ION 

SUB •14 
UJUsl68 . 172 
IIQV (AVC:) 
OMX •l, S 
IMN •, 037437 

BMX •l, "98 

. 0374�1 , 362029 . 68662 
. 1 99733 . 524324 . 84 8 9 16 

Mode l  of Human Knee, Wayne Pfe i ler, et al . 

/\N 

1. . 1 74 1 . 498 

Figure A32: Stress Distribution in Coupled Model Medial Meniscus 
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Figure A33: Stress Distribution in Constrained Model Femur 
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Figure A34: Stress Distribution in Coupled Model Femur 
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Figure A35: Stress Distribution in Constrained Model Tibia 
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Figure A36: Stress Distribution in Coupled Model Tibia 
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Figure A37: Stress Distribution in Constrained Model Femoral Subchondral Bone 
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Figure A38: Stress Distribution in Coupled Model Femoral Subchondral Bone 
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Figure A39: Stress Distribution in Constrained Model Tibial Subchondral Bone 
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Figure A40: Stress Distribution in Coupled Model Tibial Subchondral Bone 
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Figure A41: Stress Distribution in Constrained Model Cortical Bone 
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Figure A42: Stress Distribution in Coupled Model Cortical Bone 
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Figure A43: Stress Distribution in Constrained Model Femoral Trabecular Bone 
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Figure A44: Stress Distribution in Coupled Model Femoral Trabecular Bone 
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Figure A45: Stress Distribution in Constrained Model Tibial Trabecular Bone 
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Figure A46: Stress Distribution in Coupled Model Femoral Trabecular Bone 
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Figure A47: Mode 2 of Constrained Model 
(Rotation about Y-axis, 35.78 Hz) 

Figure A48: Mode 3 of Constrained Model 
(Rotation about X-axis, 79.64 Hz) 
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Figure A49: Mode 4 of Constrained Model 
(Shaft warping, 240. 12 Hz) 

Figure A50: Mode 5 of Constrained Model 
(Shaft warping, 244.30 Hz) 
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Figure A51 :  Mode 6 of Constrained Model 
(Trabecular oscillation, 261.58 Hz) 

Figure A52: Mode 1 of Coupled Model 
(Torsion about Z-axis, 2.55 Hz) 
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Figure A53: Mode 2 of Coupled Model 
(Torsion about Z-axis, 5.98 Hz) 

Figure A54: Mode 3 of Coupled Model 
(Axial compression, translation, 7 .76 Hz) 
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Figure A55: Mode 4 of Coupled Model 
(Axial compression, 17 .70 Hz) 

Figure A56: Mode 5 of Coupled Model 
(Warping, 126.26 Hz) 
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Figure A57: Mode 6 of Coupled Model 
(Warping, 127. 73 Hz) 
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